

MLZ / MLM Refrigeration scroll compressors

50 - 60 Hz - R404A - R507 - R134a - R22

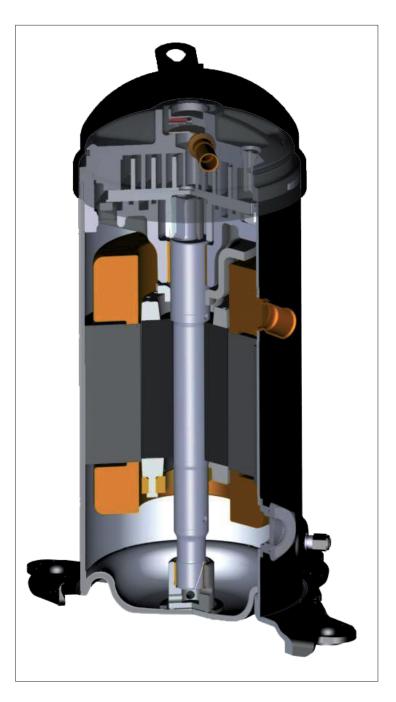
Selection & application guidelines

Danfoss

Features	4
Scroll compression principle	5
The scroll compression process	
Compressor model designation	6
Nomenclature	
Label	6
	7
50 Hz	
60 Hz	
Dimensions	10
MLZ/MLM015-019-021-026	
MLZ/MLM030-038-045-048	
MLZ/MLM058-066-076	12
Oil sight glass	
Schrader	
Suction and discharge connections	13
ELECTRICAL DATA, CONNECTIONS AND WIRING	
Motor voltage	
Wiring connections	
IP rating	
Three phase electrical characteristics Single phase electrical characteristics	I ⊃ 15
LRA (Locked Rotor Amp)	
MCC (Maximum Continuous Current)	
Max Oper. A (Maximum Operating Amp)	16
Winding resistance	
Electrical connections	
Nominal capacitor value and relays	
Three phase Single phase	
Internal motor protection	
Phase sequence and reverse rotation protection	
Voltage imbalance	
Approvals and certifications	19
Approvals and certificates	
Pressure equipment directive 97/23/EC	
Low voltage directive73/23/EC, 93/68/EC	19
Internal free volume	19
OPERATING CONDITIONS	20
Refrigerant and lubricants	
Motor supply	
Compressor ambient temperature	
Application envelope	
Maximum discharge gas temperature High and low pressure protection	
On/off cycling (cycle rate limit)	
System design recommendations	
Essential piping design considerations	
Refrigerant charge limit	
Off-cycle migration	
Liquid flood back	

Danfoss

CONTENTS


SPECIFIC APPLICATION RECOMMENDATIONS	
Low ambient application Scroll and reciprocating	
Low load operations	
Brazed plate heat exchangers	30
Water utilising systems	
Sound and vibration management	31
Starting sound level	
Running sound level	
Stopping sound level	
Sound generation in a refrigeration system	
Compressor sound radiation	
Mechanical vibrations	
Gas pulsation	
Installation	
System cleanliness	
Compressor handling and storage	
Compressor mounting	
Compressor holding charge	
Tube brazing procedure	
Brazing material	
Vacuum evacuation and moisture removal Liquid line filter driers	
Refrigerant charging	
Insulation resistance and dielectric strength	
-	
ORDERING INFORMATION AND PACKAGING	
Packaging	
Packaging details	
MLZ compressors	
MLM compressors	
SPARE PARTS & ACCESSORIES	
Run capacitors for PSC wiring	
Start capacitors and starting relay for CSR wiring	
Rotolock adaptor set	
Rotolock adaptor	
Crankcase heater	
Discharge temperature protection Lubricant	
Mounting hardware	
mounting hardware	

ant

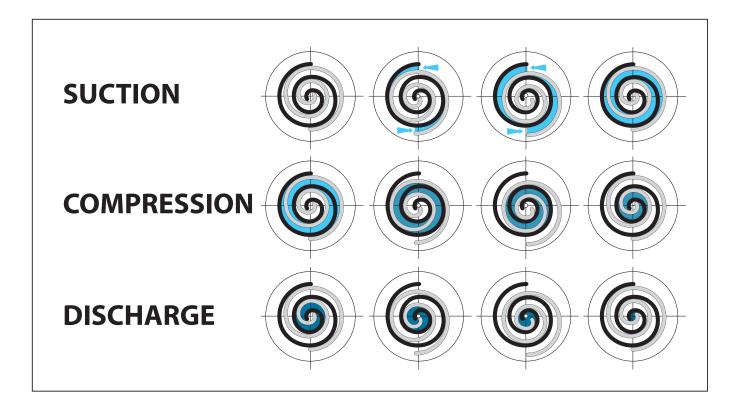
With its unique scroll design and manufacturing process flexibility, the new Danfoss MLZ/MLM refrigeration compressor offers a highly efficient solution for demanding refrigeration applications.

pressors designed for commercial refrigeration applications. These compressors are engineered for refrigeration, and offer cooling capacity from 3.4 to 21 kW (2 to 10 HP) at common voltages and frequencies as well as any of the common refrigerants (R404A - R134a - R507 - R22).

This new family of refrigeration compressors includes 11 sizes of medium temperature scroll com-

Thanks to its dedicated refrigeration design, the MLZ/MLM scroll compressor delivers a number of powerful advantages. With its high efficiency motor and optimised scroll design it reduces energy

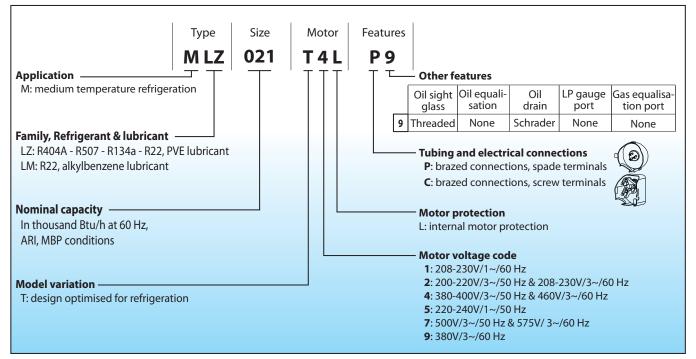
cost in normal operating conditions and delivers high capacity and an optimised pressure ratio for refrigeration applications.


SCROLL COMPRESSION PRINCIPLE

The scroll compression process

The entire scroll compression process is illustrated below. The centre of the orbiting scroll traces a circular path around the centre of the fixed scroll. This movement creates compression pockets between the two scroll elements.

Low pressure suction gas is trapped within each crescent-shaped pocket as it forms; continuous motion of the orbiting scroll serves to seal the pocket, which decreases in volume as the pocket moves towards the centre of the scroll set, with corresponding increase in gas pressure. Maximum compression is achieved, as the pocket reaches the discharge port at the centre.


Scroll compression is a continuous process: when one pocket of gas is being compressed during the second orbit, another gas quantity enters a new pocket formed at the periphery, and simultaneously, another is being discharged.

Danfoss scroll compressors are manufactured using the most advanced machining, assembly, and process control techniques. In design of both the compressor and the factory, very high standards of reliability and process control were first priority. The result is a highly efficient product with the highest reliability obtainable, and a low sound level.

COMPRESSOR MODEL DESIGNATION

Nomenclature

Label

Serial number

TECHNICAL SPECIFICATIONS

			Nom	ninal	Power	Effici	ency *	Swept	Displace-	Oil charge	Net weigl
	Model	HP		apacity *	input *	COP	EER	volume	ment	3	(with oil
			W	Btu/h	kW	W/W	Btu/h/W	cm³/rev	m³/h	Litres	kg
	MLZ015	2									
	MLZ019	2 1/2	4500	15 200	2.16	2.06	7.05	43.5	7.6	1.1	31
	MLZ021	3	4700	16 100	2.27	2.08	7.09	46.2	8.0	1.1	31
*	MLZ026	3 1⁄2	5900	20 100	2.83	2.09	7.12	57.1	9.9	1.1	31
*	MLZ030	4	7100	24 200	3.34	2.13	7.25	68.8	12.0	1.6	37
R404A	MLZ038	5	8500	28 800	3.97	2.13	7.27	81.0	14.1	1.6	37
R4	MLZ045	6	10200	34 700	4.59	2.22	7.56	98.6	17.2	1.6	37
	MLZ048	7	11100	37 900	5.05	2.20	7.50	107.5	18.7	1.6	37
	MLZ058	7 1⁄2	12900	43 900	6.22	2.07	7.06	126.0	21.9	2.7	44
	MLZ066	9	15200	51 800	6.92	2.19	7.49	148.8	25.9	2.7	45
	MLZ076	10	17300	59 100	7.93	2.18	7.45	162.4	28.3	2.7	45
	MLZ015	2									
	MLZ019	2 1⁄2	2600	9 000	1.28	2.05	7.01	43.5	7.6	1.1	31
	MLZ021	3	2800	9 500	1.33	2.11	7.20	46.2	8.0	1.1	31
	MLZ026	3 1/2	3400	11 800	1.62	2.13	7.25	57.1	9.9	1.1	31
n n	MLZ030	4	4200	14 200	1.93	2.16	7.38	68.8	12.0	1.6	37
B 134a	MLZ038	5	4900	16 700	2.34	2.09	7.13	81.0	14.1	1.6	37
ñ 🗠	MLZ045	6	6000	20 600	2.69	2.24	7.66	98.6	17.2	1.6	37
	MLZ048	7	6400	21 900	2.91	2.21	7.54	107.5	18.7	1.6	37
	MLZ058	7 1⁄2	7700	26 100	3.61	2.12	7.25	126.0	21.9	2.7	44
	MLZ066	9	8900	30 400	4.10	2.17	7.42	148.8	25.9	2.7	45
	MLZ076	10	9900	33 900	4.67	2.13	7.25	162.4	28.3	2.7	45
	MLZ/MLM015	2									
	MLZ/MLM019	2 1/2	4200	14 400	1.88	2.25	7.68	43.5	7.6	1.1	31
	MLZ/MLM021	3	4500	15 300	2.07	2.16	7.38	46.2	8.0	1.1	31
	MLZ/MLM026	3 1/2	5700	19 500	2.39	2.39	8.16	57.1	9.9	1.1	31
	MLZ/MLM030	4	6700	22 800	3.04	2.19	7.48	68.8	12.0	1.6	37
R22	MLZ/MLM038	5	7800	26 600	3.55	2.20	7.50	81.0	14.1	1.6	37
8	MLZ/MLM045	6	9900	33 900	4.03	2.47	8.42	98.6	17.2	1.6	37
	MLZ/MLM048	7	10600	36 100	4.42	2.39	8.17	107.5	18.7	1.6	37
	MLZ/MLM058	7 1/2	12000	41 100	5.31	2.26	7.73	126.0	21.9	2.7	44
	MLZ/MLM066	9	14400	49 000	5.90	2.43	8.31	148.8	25.9	2.7	45
	MLZ/MLM076	10	16600	56 700	6.71	2.43	8.45	162.4	28.3	2.7	45
-	MLZ015	2	10000	50700	0.71	2.40	0.45	102.4	20.5	2.1	45
	MLZ019	2 1/2	5500	18 600	2.58	2.12	7.22	43.5	9.1	1.1	31
	MLZ019 MLZ021	3	5800	19 900	2.58	2.12	7.26	46.2	9.7	1.1	31
	MLZ021	3 1/2	7200	24 700	3.44	2.10	7.18	57.1	12.0	1.1	31
*		4	8500	29 000	3.90	2.10	7.45	68.8	14.4	1.6	37
R404A **	MLZ030	4 5	10200	34 900	4.70	2.18	7.45	81.0	14.4	1.6	37
402	MLZ038 MLZ045	6	12400	42 200	4.70 5.64	2.18	7.44	98.6	20.7	1.6	37
È											
	MLZ048	7	13500	46 200	6.15	2.20	7.51	107.5	22.6	1.6	37
	MLZ058	7 1/2	15700	53 700	7.35	2.14	7.31	126.0	26.4	2.7	44
	MLZ066	9	18400	62 600	8.40	2.19	7.46	148.8	31.2	2.7	45
	MLZ076	10	20900	71 300	9.59	2.18	7.43	162.4	34.1	2.7	45
	MLZ015	2									
	MLZ019	2 1/2	3200	11 000	1.53	2.11	7.19	43.5	9.1	1.1	31
	MLZ021	3	3400	11 700	1.58	2.17	7.41	46.2	9.7	1.1	31
	MLZ026	3 1⁄2	4200	14 500	1.91	2.22	7.57	57.1	12.0	1.1	31
R134a	MLZ030	4	5100	17 500	2.35	2.18	7.43	68.8	14.4	1.6	37
R134a	MLZ038	5	6000	20 600	2.80	2.16	7.36	81.0	17.0	1.6	37
'	MILZ045	6	7300	25 100	3.32	2.21	7.55	98.6	20.7	1.6	37
	MLZ048	7	7800	26 700	3.54	2.21	7.53	107.5	22.6	1.6	37
	MLZ058	7 1⁄2	9400	32 100	4.28	2.20	7.50	126.0	26.4	2.7	44
	MLZ066	9	10800	36 800	4.85	2.22	7.58	148.8	31.2	2.7	45
	MLZ076	10	12100	41 400	5.61	2.16	7.38	162.4	34.1	2.7	45
	MLZ/MLM015	2									
	MLZ/MLM019	2 1⁄2	5200	17 700	2.49	2.09	7.12	43.5	9.1	1.1	31
	MLZ/MLM021	3	5700	19 500	2.52	2.26	7.73	46.2	9.7	1.1	31
	MLZ/MLM026	3 1⁄2	7300	24 800	3.01	2.41	8.23	57.1	12.0	1.1	31
	MLZ/MLM030	4	8200	27 900	3.48	2.35	8.02	68.8	14.4	1.6	37
R22	MLZ/MLM038	5	9800	33 400	4.06	2.41	8.22	81.0	17.0	1.6	37
142	MLZ/MLM045	6	11800	40 200	4.86	2.43	8.28	98.6	20.7	1.6	37
	MLZ/MLM048	7	12900	44 200	5.36	2.41	8.23	107.5	22.6	1.6	37
	MLZ/MLM058	7½	15100	51 500	6.46	2.34	7.97	126.0	26.4	2.7	44
	MLZ/MLM066	9	17500	59 900	7.28	2.41	8.23	148.8	31.2	2.7	45
	MLZ/MLM076	10	20600	70 400	8.59	2.40	8.20	162.4	34.1	2.7	45

* at EN12900 conditions: $T_o = -10^{\circ}$ C, $T_c = 45^{\circ}$ C, RGT= 20°C, SC= 0K ** R507 performance data are nearly identical to R404A performance data

Motor voltage code 4: 380-400V/3~/50 Hz & 460V/3~/60 Hz

Danfoss

TECHNICAL SPECIFICATIONS

50 Hz

		T _. =-10°C RGT=20°		T _e =-6.7°C		T _o =0°C,	T _c =40°C C, SC=0K	T _. =-3°C, RGT=20°		T ₀ =-10°C	
	Models	Coldi		RGT=20° Ice ma			drier	Milk			C, SC=0K conditions
	modelo	Capacity	COP	Capacity	COP	Capacity	COP	Capacity	COP	Capacity	COP
		W	W/W	W	W/W	W	W/W	W	W/W	W	W/W
	MLZ015										
	MLZ019	4 800	2.52	5 500	2.85	6 900	3.64	5 700	2.68	4 500	2.06
	MLZ021	5 100	2.53	5 800	2.86	7 300	3.63	6 100	2.68	4 700	2.08
*	MLZ026	6 400	2.54	7 200	2.88	9 200	3.67	7 600	2.71	5 900	2.09
	MLZ030	7 700	2.59	8 700	2.93	11 100	3.72	9 200	2.75	7 100	2.13
R404A	MLZ038	9 200	2.59	10 400	2.92	13 200	3.68	10 900	2.73	8 500	2.13
R4	MLZ045	11 100	2.70	12 500	3.05	15 900	3.86	13 100	2.86	10 200	2.22
	MLZ048	12 100	2.68	13 600	3.03	17 300	3.85	14 300	2.84	11 100	2.20
	MLZ058	14 300	2.57	16 300	2.93	20 900	3.75	17 000	2.75	12 900	2.07
	MLZ066	16 500	2.65	18 600	2.98	23 600	3.71	19 500	2.80	15 200	2.19
	MLZ076	19 100	2.67	21 500	2.99	27 200	3.71	22 100	2.75	17 300	2.18
	MLZ015										
	MLZ019	2 800	2.40	3 200	2.75	4 300	3.60	3 600	2.73	2 600	2.05
	MLZ021	3 000	2.46	3 400	2.82	4 600	3.69	3 800	2.80	2 800	2.11
	MLZ026	3 700	2.49	4 200	2.87	5 600	3.75	4 700	2.84	3 400	2.13
ta ta	MLZ030	4 400	2.53	5 100	2.91	6 800	3.81	5 700	2.88	4 200	2.16
R134a	MLZ038	5 200	2.45	6 000	2.80	8 000	3.66	6 700	2.78	4 900	2.09
č	MLZ045	6 400	2.64	7 500	3.04	9 900	4.00	8 300	3.01	6 000	2.24
	MLZ048	6 800	2.60	7 900	2.99	10 500	3.90	8 800	2.95	6 400	2.21
	MLZ058	8 200	2.50	9 400	2.85	12 400	3.67	10 400	2.80	7 700	2.12
	MLZ066	9 500	2.55	11 000	2.91	14 500	3.76	12 100	2.86	8 900	2.17
	MLZ076	10 500	2.50	12 200	2.86	16 100	3.68	13 500	2.81	9 900	2.13
	MLZ/MLM015										
	MLZ/MLM019	4 500	2.64	5 100	3.01	6 500	3.81	5 500	2.93	4 200	2.25
	MLZ/MLM021	4 800	2.56	5 400	2.94	6 900	3.73	5 900	2.88	4 500	2.16
	MLZ/MLM026	6 000	2.85	6 900	3.25	8 800	4.09	7 500	3.12	5 700	2.39
	MLZ/MLM030	7 100	2.58	8 100	3.05	10 300	3.91	8 800	3.01	6 700	2.19
R22	MLZ/MLM038	8 300	2.59	9 400	3.02	12 100	3.86	10 300	2.97	7 800	2.20
-	MLZ/MLM045	10 500	2.91	11 800	3.19	15 000	3.99	12 700	3.05	9 900	2.47
	MLZ/MLM048	11 100	2.82	12 700	3.16	16 400	3.99	13 900	3.06	10 600	2.39
	MLZ/MLM058	12 800	2.72	14 800	3.14	19 300	4.07	16 300	3.09	12 000	2.26
	MLZ/MLM066	15 100	2.83	17 300	3.25	22 400	4.12	19 000	3.20	14 400	2.43
	MLZ/MLM076	17 600	2.96	20 000	3.31	25 600	4.15	21 800	3.20	16 600	2.48

COP = Coefficient Of Performance

All performance data are for motor voltage code 4, 380-400V/3ph/50 Hz * R507 performance data are nearly identical to R404A performance data

Capacity data at other conditions are available in the datasheets at: www.danfoss.com/odsg

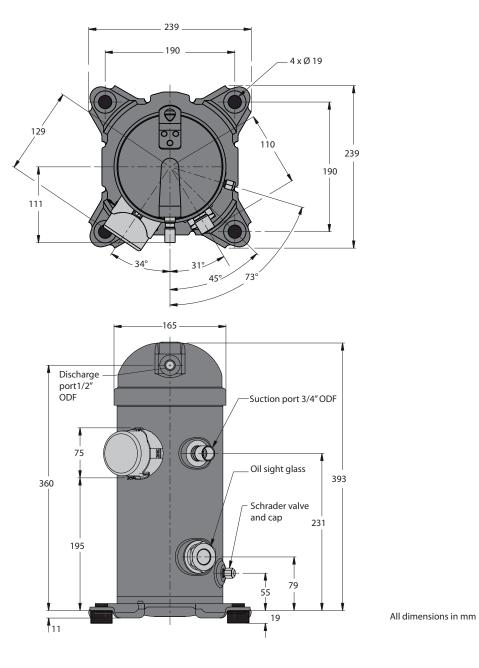
Danfoss

TECHNICAL SPECIFICATIONS

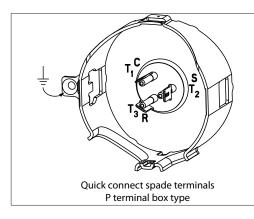
60 Hz

		T _o =-10°C		T _o =-6.7°C	-	T _o =0°C,		T₀=-3°C,	-	T _. =-10°C	c
	Models	RGT=20° Coldr		RGT=20° Ice ma		RGT=20° Air c		RGT=20° Milk		RGT=20° EN12900 d	C, SC=0K conditions
		Capacity	COP	Capacity	COP	Capacity	COP	Capacity	COP	Capacity	COP
		W	W/W	W	W/W	W	W/W	W	W/W	W	W/W
	MLZ015	=		6 = 0.0				=	0.70		
	MLZ019	5 900	2.57	6 700	2.91	8 400	3.70	7 000	2.73	5 500	2.12
	MLZ021	6 300	2.58	7 100	2.92	9 000	3.70	7 500	2.76	5 800	2.13
*	MLZ026	7 900	2.55	8 900	2.88	11 200	3.64	9 300	2.71	7 200	2.10
4	MLZ030	9 300	2.64	10 400	2.97	13 200	3.73	11 000	2.79	8 500	2.18
R404A	MLZ038	11 100	2.63	12 500	2.95	15 800	3.71	13 100	2.77	10 200	2.18
R4	MLZ045	13 400	2.67	15 200	3.01	19 100	3.79	15 900	2.82	12 400	2.19
	MLZ048	14 700	2.66	16 600	2.99	21 000	3.76	17 400	2.81	13 500	2.20
	MLZ058	17 400	2.62	19 800	2.95	25 200	3.68	20 500	2.75	15 700	2.14
	MLZ066	19 900	2.61	22 500	2.91	28 500	3.59	23 600	2.75	18 400	2.19
	MLZ076	22 800	2.62	25 700	2.93	32 500	3.61	26 800	2.75	20 900	2.18
	MLZ015										
	MLZ019	3 400	2.46	4 000	2.82	5 400	3.68	4 500	2.82	3 200	2.11
	MLZ021	3 700	2.53	4 300	2.91	5 700	3.79	4 800	2.90	3 400	2.17
	MLZ026	4 500	2.59	5 300	2.97	7 000	3.86	5 900	2.96	4 200	2.22
et	MLZ030	5 400	2.54	6 300	2.93	8 500	3.83	7 100	2.93	5 100	2.18
R134a	MLZ038	6 400	2.52	7 400	2.91	9 900	3.80	8 300	2.90	6 000	2.16
Ě	MLZ045	7 900	2.62	9 100	3.02	12 200	3.95	10 100	2.98	7 300	2.21
	MLZ048	8 300	2.61	9 700	2.99	12 900	3.88	10 700	2.94	7 800	2.21
	MLZ058	10 000	2.58	11 500	2.94	15 200	3.73	12 700	2.87	9 400	2.20
	MLZ066	11 500	2.61	13 200	2.95	17 400	3.74	14 600	2.88	10 800	2.22
	MLZ076	12 900	2.54	14 900	2.89	19 600	3.67	16 400	2.82	12 100	2.16
	MLZ/MLM015										
	MLZ/MLM019	5 400	2.40	6 300	2.77	8 100	3.55	6 900	2.76	5 200	2.09
	MLZ/MLM021	6 000	2.60	6 800	3.07	8 700	3.97	7 400	3.09	5 700	2.26
	MLZ/MLM026	7 600	2.86	8 500	3.20	10 700	3.95	9 200	3.07	7 300	2.41
	MLZ/MLM030	8 600	2.73	9 900	3.11	12 700	3.91	10 900	3.05	8 200	2.35
R22	MLZ/MLM038	10 300	2.82	11 700	3.13	15 000	3.89	12 800	3.04	9 800	2.41
	MLZ/MLM045	12 500	2.86	14 300	3.23	18 400	4.05	15 700	3.14	11 800	2.43
	MLZ/MLM048	13 700	2.84	15 700	3.21	20 100	4.05	17 100	3.13	12 900	2.41
	MLZ/MLM058	16 100	2.75	18 300	3.11	23 600	3.96	19 900	3.05	15 100	2.34
	MLZ/MLM066	18 500	2.79	21 000	3.15	27 000	3.97	23 000	3.10	17 500	2.41
	MLZ/MLM076	21 700	2.80	24 600	3.18	31 300	4.01	26 700	3.12	20 600	2.40

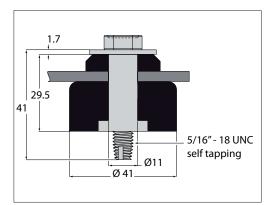
COP = Coefficient Of Performance


All performance data are for motor voltage code 4, 460V/3ph/60 Hz * R507 performance data are nearly identical to R404A performance data

Capacity data at other conditions are available in the datasheets at: www.danfoss.com/odsg

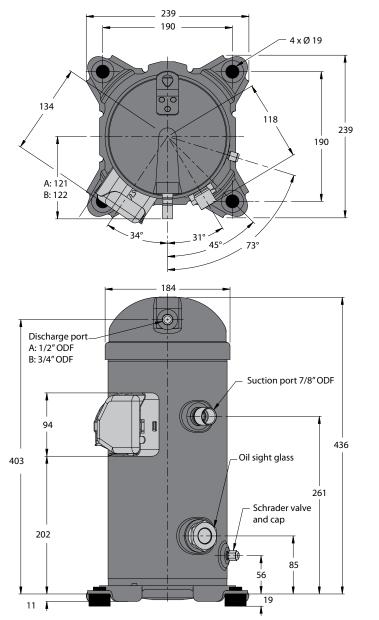


DIMENSIONS


MLZ/MLM015-019-021-026

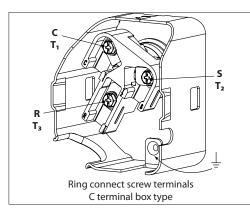
Terminal box

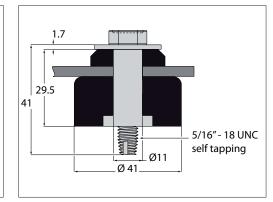
Mounting grommet



Refer to page 36 for overview of shipped mounting accessories

DIMENSIONS

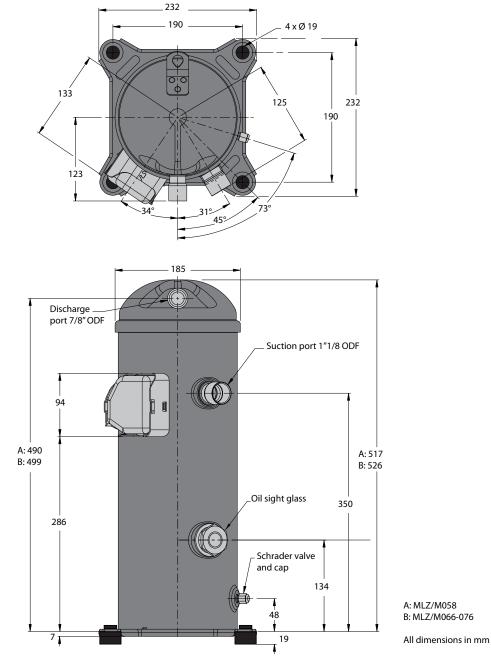

MLZ/MLM030-038-045-048


A: MLZ/MLM 030-038-045 B: MLZ/MLM 048

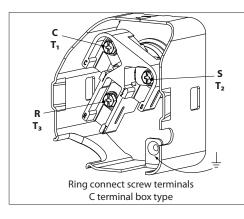
All dimensions in mm

Terminal box

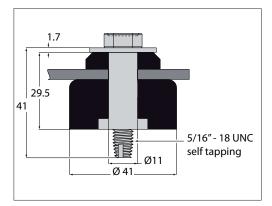
Mounting grommet



Refer to page 36 for overview of shipped mounting accessories



DIMENSIONS


MLZ/MLM058-066-076

Terminal box

Mounting grommet

Refer to page 36 for overview of shipped mounting accessories

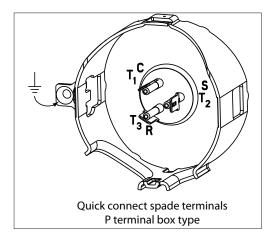
Application guidelines	DIMENSIONS	
Oil sight glass	MLZ / MLM scroll compressors come equipped with a threaded oil sight glass with 1"1/8 - 18 UNF connection. It can be used for a visual check of the oil amount and condition or it may be replaced by an accessory oil management device.	Oil sight glass Oil sight glass Other valve and cap
Schrader	The oil fill and drain connection and gauge port is a 1/4" male flare connector incorporating a schrader valve.	

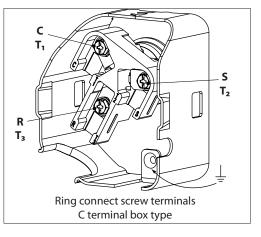
Suction and discharge	MLZ / MLM scroll compressors are factory deliv-	rotolock adaptors and adaptor sets are available
connections	ered with brazed connections only. Dedicated	as accessory.

)	
Compressor models	Brazed c	onnection size	(①adap	Rotolock adaptor set otor, @gasket, ③sleeve	e, @nut)	Rotolock adaptor (① adaptor only)
			Rotolock	Solder sleeve ODF	Code Number	Code Number
MLZ/MLM 015-019-021-026	Suction	3/4"	1-1/4"	3/4"	120Z0126	120Z0366
WEZ/WEW 013-019-021-020	Discharge	1/2"	1"	1/2"	12020120	120Z0365
MLZ/MLM 030-038-045	Suction	7/8"	1-1/4"	7/8"	120Z0127	120Z0367
WILZ/WILW 050-036-045	Discharge	1/2"	1"	1/2"	12020127	120Z0365
MLZ/MLM 048	Suction	7/8"	1-1/4"	7/8"	120Z0128	120Z0367
IVILZ/IVILIVI 048	Discharge	3/4"	1-1/4"	3/4"	12020128	120Z0366
MLZ/MLM 058-066-076	Suction	1-1/8"	1-3/4"	1-1/8"	120Z0129	120Z0364
	Discharge	7/8"	1-1/4"	7/8"	12020129	120Z0367

ELECTRICAL DATA, CONNECTIONS AND WIRING

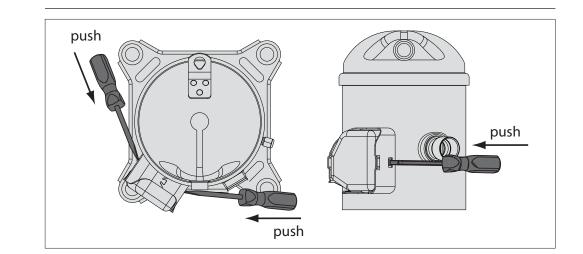
Motor voltage


MLZ/MLM scroll compressors are available in 3 different motor voltages.


		Motor voltage code 4	Motor voltage code 5
50 Hz	Nominal voltage	380-400V/3 ph/50 Hz	220-240V/1 ph/50Hz
50 HZ	Voltage range	340 - 460 V	198-264 V
CO 11-	Nominal voltage	460V/3 ph/60 Hz	-
60 Hz	Voltage range	414 - 506 V	-

Wiring connections

MLZ/MLM scroll compressors will only compress gas while rotating counter-clockwise (when viewed from the compressor top). Since singlephase motors will start and run in only one direction, reverse rotation is not a major consideration. Three-phase motors, however, will start and run in either direction, depending on the phase angles of the supplied power. Care must be taken during installation to ensure that the compressor operates in the correct direction (see "Phase sequence and reverse rotation protection" page 18).


The drawings below show electrical terminal labelling and should be used as a reference when wiring the compressor. For three phase applications, the terminals are labelled T1, T2, and T3. For single-phase applications the terminals are labelled C (common), S (start), and R (run).

Terminal cover mounting

The terminal cover and gasket should be installed prior to operation of the compressor. Respect the "up" marking on gasket and cover and ensure that the two outside tabs of the cover engage the terminal box.

Terminal cover removal

ELECTRICAL DATA, CONNECTIONS AND WIRING

IP rating

The compressor terminal box IP rating according to CEI 529 is **IP22** for all models.

- First numeral, level of protection against contact and foreign objects
 - 2 protection against object size over 12.5 mm (fingers of similar)
- Second numeral, level of protection against water
 protection against dripping water when tilted up to 15°

Three phase electrical			LRA	MCC	Max Oper.A	Wind	ing resistanc	ce (Ω)
characteristics		Compressor model	А	А	A	T1-T3	T1-T2	T1-T3
		MLZ/MLM 015T4						
	NÌ	MLZ/MLM 019T4	45	9.5	6.7	3.4	4.7	4.7
	de 4 0 Hz, Hz	MLZ/MLM 021T4	45	9.5	6.8	3.4	4.7	4.7
	co(60	MLZ/MLM 026T4	45	11	8.3	3.4	4.7	4.7
		MLZ/MLM 030T4	60	13	9.8	2.6	2.6	2.6
		MLZ/MLM 038T4	70	15	11.7	2.3	2.3	2.4
		MLZ/MLM 045T4	82	15	14.1	1.9	1.9	1.8
	tor \ 400	MLZ/MLM 048T4	87	16	15.3	1.7	1.7	1.7
	Motol 380-40 460 \	MLZ/MLM 058T4	95	20	18.1	1.4	1.4	1.4
	m	MLZ/MLM 066T4	110	24	20.3	1.3	1.3	1.3
		MLZ/MLM 076T4	140	25	23.9	1.1	1.1	1.1

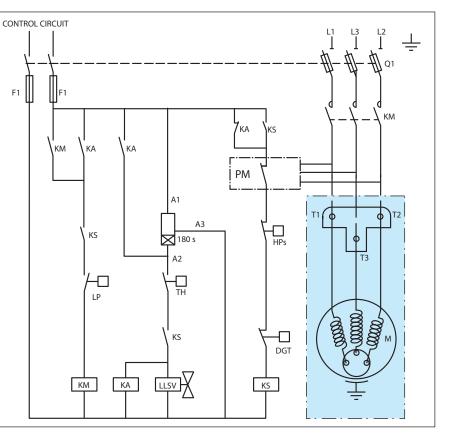
Single phase electrical characteristics		Compressor model	LRA A	MCC A	Max. Oper. A A	Winding res	sistance (Ω) start
	2	MLZ/MLM 015T5					
	Motor code 5 220-240 V / 1 ph 50 Hz	MLZ/MLM 019T5	97	23.0	18.3	0.69	1.51
		MLZ/MLM 021T5	97	25.0	19.5	0.69	1.51
		MLZ/MLM 026T5	97	27.0	24.2	0.69	1.51
		MLZ/MLM 030T5	127	32.0	28.9	0.42	1.31
	22	MLZ/MLM 038T5	130	42.0	33.9	0.39	1.02

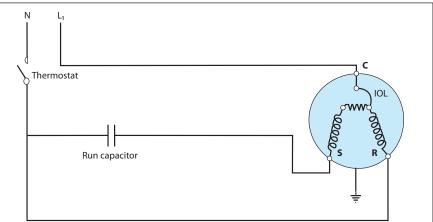
LRA (Locked Rotor Amp)	LRA is the higher average current as measured on a mechanically blocked compressor tested under nominal voltage. LRA is printed on the nameplate.	The LRA value can be used as a rough estimation for the starting current. However in most cases, the real starting current will be lower. Many coun- tries have defined limits for the starting current in domestic use. A soft starter can be applied to reduce starting current.
MCC (Maximum Continuous Current)	The MCC is the current at which the internal mo- tor protection trips under maximum load and low voltage conditions.	This MCC value is the maximum at which the com- pressor can be operated in transient conditions and out of the application envelope. Above this value the overload will switch off to protect the motor.

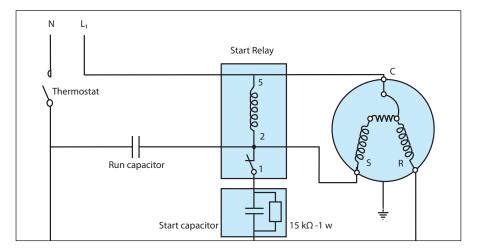
		Danfoss
Application guidelines	ELECTRICAL DATA, CONNECTIONS AND WIRING	
Max Oper. A (Maximum Operating Amp)	The Max Oper. A is the current when the compres- sor operates at maximum load conditions and 10% below nominal voltage.	Max Oper. A can be used to select cables and contactors.
	This value which is the max rated load current for the compressor is new on the nameplate.	In normal operation, the compressor current consumption is always less than the Max Oper. A value.
Winding resistance	Winding resistance is the resistance between indicated terminal pins at 25°C (resistance value +/- 7%). Winding resistance is generally low and it requires adapted tools for precise measurement. Use a dig- ital ohm-meter, a '4 wires' method and measure under stabilised ambient temperature. Winding resistance varies strongly with winding tempera- ture ; If the compressor is stabilised at a different value than 25°C, the measured resistance must be corrected with following formula:	$R_{tamb} = R_{25^{\circ}C} \frac{a + t_{amb}}{a + t_{25^{\circ}C}}$ $t_{25^{\circ}C}: reference temperature = 25^{\circ}C$ $t_{amb}: temperature during measurement (^{\circ}C)$ $R_{25^{\circ}C}: winding resistance at 25^{\circ}C$ $R_{amb}: winding resistance at t_{amb}$ $coefficient a = 234.5$
Electrical connections	MLZ / MLM single phase scroll compressors are designed to operate without any assistance. If	starting within the defined voltage range, PSC wiring is sufficient.
PSC wiring	PSC wiring with a run capacitor only is the default wiring solution for single phase MLZ and MLM compressors.	The start winding (C-S) of the motor remains in circuit through a permanent (run) capacitor. This permanent (run) capacitor is connected between the start winding (S) and the run winding (R).
CSR wiring	CSR wiring provides additional motor torque at start-up, by the use of a start capacitor in combi- nation with the run capacitor. The start capacitor is only connected during the starting operation, a potential relay is used to disconnect it after the start sequence.	Some applications with high differential pressure and start duty as "soft ice machine" can require CSR wiring. This configuration can also be used to reduce erratic starting at unfavourable conditions such as very low ambient temperature or weak voltage.

Nominal capacitor value and relays

			Default solution: PSC wiring with run capacitor only		Additionnal components for CSR wiring			
	Compressor models	PSC wiring Run capacitor		CSR wiring Start capacitor Relay		av		
		μF	Volt	μF	Volt	Refer	. /	
	MLZ/MLM015-019-021-026	70	370	145-175	330	3ARR3J3AL4	RVA9CKL	
220-240 V /1/50 Hz Motor voltage code 5	MLZ/MLM030	50	370	161-193	250	3ARR3J24AP4	RVA3EKL	
motor voltage code s	MLZ/MLM038-045-048	55	440	88-108	330	3ARR3J25AS4	RVA4GKL	


ELECTRICAL DATA, CONNECTIONS AND WIRING


Three phase


Suggested wiring diagram with "one shot" pump down cycle and safety lock-out relay

Control deviceTH
Optional short cycle timer (3 min) 180 s
Control relayKA
Liquid Line Solenoid valve LLSV
Compressor contactor KM
Phase monitor PM
Safety lock out relayKS
Pump-down control low pressure switch .LP
High pressure safety switch HPs
Fused disconnectQ1
Fuses
Compressor motorM
Discharge gas thermostatDGT

Single phase

PSC wiring

CSR wiring

ELECTRICAL DATA, CONNECTIONS AND WIRING	
MLZ/MLM scroll compressors are equipped with an internal line break protector mounted on the motor windings. The protector is an automatic reset device, containing a snap action bimetal switch.	tor current under a variety of fault conditions such as failure to start, running overload, and far failure. If the internal overload protector trips out, it mus cool down to about 60°C to reset. Depending or
Internal protectors respond to over-current and overheating. They are designed to interrupt mo-	ambient temperature, this may take up to severa hours.
The compressor will only operate properly in a single direction. Use a phase meter to establish the phase orders and connect line phases L1, L2 and L3 to terminals T1, T2 and T3, respectively. For three-phase compressors, the motor will run equally well in both directions. Reverse rotation	MLZ/MLM015-038 scroll compressors are de signed to operate for a maximum of 150 hours in reverse, but as a reverse rotation situation can ge unnoticed for longer periods, phase monitors are recommended.
results in excessive noise; no pressure differential between suction and discharge; and suction line warming rather than immediate cooling. A service technician should be present at initial start-up to verify that supply power is properly phased and	For compressors MLZ/MLM048 and larger, phase monitors are required. The selected phase moni tor should lock out the compressor from opera tion in reverse.
that compressor and auxiliaries are rotating in the correct direction.	At brief power interruptions, reverse rotation can occur with single phase compressors. In this case the internal protector will stop the compressor It will have to cool down and will restart safely afterwards.
	MLZ/MLM scroll compressors are equipped with an internal line break protector mounted on the motor windings. The protector is an automatic reset device, containing a snap action bimetal switch. Internal protectors respond to over-current and overheating. They are designed to interrupt mo- The compressor will only operate properly in a single direction. Use a phase meter to establish the phase orders and connect line phases L1, L2 and L3 to terminals T1, T2 and T3, respectively. For three-phase compressors, the motor will run equally well in both directions. Reverse rotation results in excessive noise; no pressure differential between suction and discharge; and suction line warming rather than immediate cooling. A service technician should be present at initial start-up to verify that supply power is properly phased and that compressor and auxiliaries are rotating in the

Voltage imbalance

ured at the compressor terminals for each phase phases.

For three-phase applications the voltage meas- $\,$ should be within \pm 2% of the average for all

Danfoss

Approvals and certifications		
MLZ scroll compressors comply with the following approvals and certificates.	 V- Certificates are listed on the product datasheets http://www.danfoss.com/odsg 	
CE 0062 or CE 0038 (European Directive)	All MLZ models	
UL (Underwriters Laboratories) c 🔊 us	All 60 Hz MLZ models	
Other approvals / certificates	Contact Danfoss	
Products	MLZ / MLM 015 to 076	
Refrigerating fluids	MLZ / MLM 015 to 076 Group 2	
Refrigerating fluids Category PED	Group 2 I	
Refrigerating fluids Category PED Evaluation module	Group 2 I no scope	
Refrigerating fluids Category PED	Group 2 I	
	MLZ scroll compressors comply with the following approvals and certificates. CE 0062 or CE 0038 (European Directive) UL (Underwriters Laboratories)	

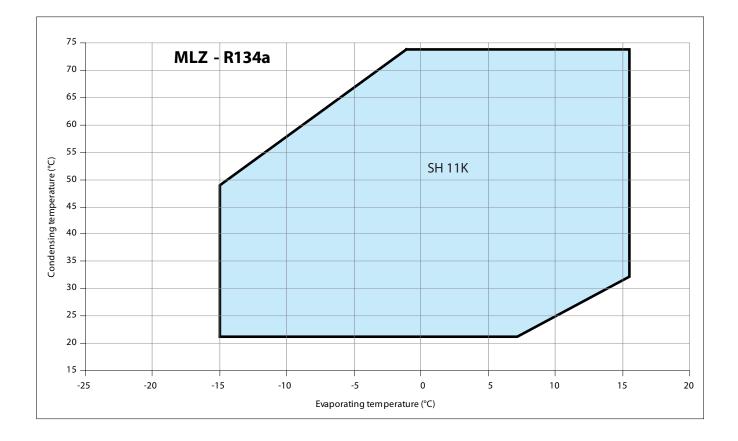
Low voltage directive	Products	MLZ / MLM 015 to 076
73/23/EC, 93/68/EC	Manufacturer's declaration of incorporation ref. EC Machines Directives 98/392/CE	Contact Danfoss

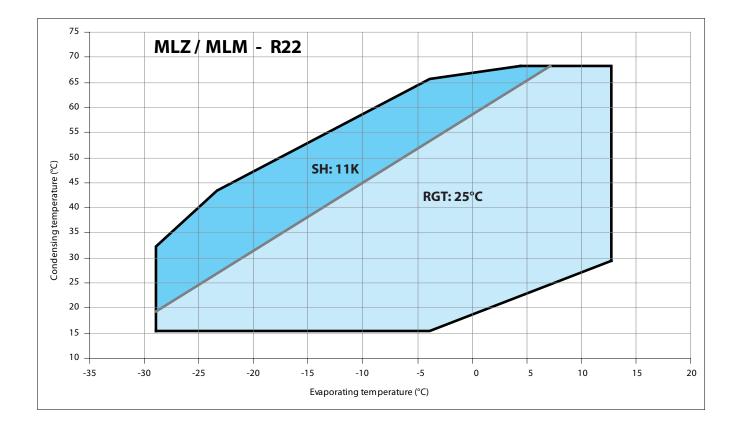
Internal free volume	Products	Internal free volume at LP side without oil (litre)
	MLZ/MLM 015 - 026	1.85
	MLZ/MLM 030-048	1.85
	MLZ/MLM 058-076	6.15


Danfoss

OPERATING CONDITIONS

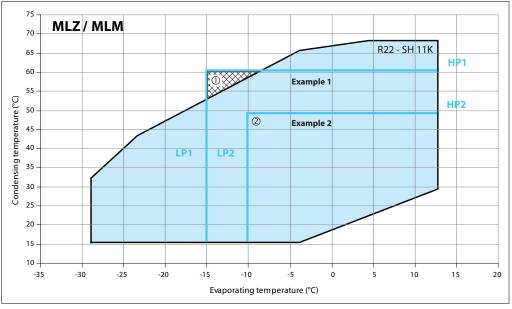
	The scroll compressor application range is influ- enced by several parameters which need to be monitored for a safe and reliable operation. These parameters and the main recommenda- tions for good practice and safety devices are ex- plained hereunder.	 Refrigerant and lubricants Motor supply Compressor ambient temperature Application envelope (evaporating temperature, condensing temperature, return gas temperature)
Refrigerant and lubricants		
General information	 When choosing a refrigerant, different aspects must be taken into consideration: Legislation (now and in the future) Safety Application envelope in relation to expected running conditions Compressor capacity and efficiency Compressor manufacturer recommendations & guidelines 	Additional points could influence the final choice: • Environmental considerations • Standardisation of refrigerants and lubricants • Refrigerant cost • Refrigerant availability
R22	R22 is an HCFC refrigerant and is still a wide use to- day. It has a low ODP (Ozone Depletion Potential) and therefore it will be phased out in the future. Check local legislation.	When R22 is applied in refrigeration applications it can lead to high discharge temperature. Carefully check all other parameters that can influence the discharge temperature.
R134a	Refrigerant R134a is an HFC refrigerant. R134a has zero ozone depletion potential (ODP = 0) and is commonly accepted as the best R12 alternative. R134a is a pure refrigerant and has zero tempera-	ture glide. For applications with high evaporating and high condensing temperatures, R134a is the ideal choice.
R404A	R404A is an HFC refrigerant. R404A has zero ozone depletion potential (ODP = 0). R404A is especially suitable for low evaporating temperature applications but it can also be applied to medium evaporating temperature applications. R404A is a	mixture and has a very small temperature glide, and therefore must be charged in its liquid phase, but for most other aspects this small glide can be neglected. Because of the small glide, R404A is of- ten called a near-azeotropic mixture.
R507	R507 is an HFC refrigerant with properties com- parable to R404A. R507 has no ozone depletion potential (ODP = 0). As with R404A, R507 is partic- ularly suitable for low evaporating temperature	applications but it can also be used for medium evaporating temperature applications. R507 is an azeotropic mixture with no temperature glide.
PVE	Polyvinyl ether (PVE) is an innovative refrigeration lubricant for HFC refrigerant systems. PVE is as hy- groscopic as existing polyolester lubricants (POE), but PVE doesn't chemically react with water; no acids are formed and compressor evacuation is easier.	The compressor technology applied in MLZ com- pressors in combination with PVE lubricant pro- vides the best possible result in terms of reliability and compressor lifetime. The PVE lubricant is compatible with R22 which makes the MLZ compressors a very versatile mul- ti- refrigerant solution.
Alkylbenzene oil	Alkylbenzene oil can be applied in systems using HCFC refrigerants (R22). Compared to a mineral oil it provides distinct advantages: excellent mis- cibility, excellent thermal stability, compatibility with mineral oils and constant quality.	MLM series compressors are charged with Alkylbenzene oil and herewith offer an economi- cally interesting alternative to the MLZ series in regions where R22 is still the predominant refrig- erant. Note however that MLM compressors can not be used with HFC refrigerants.


		Danfoss
Application guidelines	OPERATING CONDITIONS	
Motor supply	MLZ / MLM scroll compressors can be operated at nominal voltages as indicated on page 14. Under- voltage and over-voltage operation is allowed within the indicated voltage ranges. In case of	risk of under-voltage operation, special attention must be paid to current draw and start assist for single-phase compressors may be required.
Compressor ambient temperature	MLZ / MLM compressors can be applied from -35°C to 50°C ambient temperature. The compressors are designed as 100 % suction gas cooled	without need for additional fan cooling. Ambient temperature has very little effect on the compres- sor performance.
High ambient temperature	In case of enclosed fitting and high ambient tem- perature it's recommend to check the tempera- ture of power wires and conformity to their insu- lation specification.	In case of safe tripping by the internal compres- sor overload protection the compressor must cool down to about 60°C before the overload will reset. A high ambient temperature can strongly delay this cool-down process.
Low ambient temperature	Although the compressor itself can withstand low ambient temperature, the system may require specific design features to ensure safe and reli-	able operation. See section 'Specific application recommendations'.
Application envelope	The operating envelopes for MLZ/MLM scroll compressors are given in the figures below, where the condensing and evaporating temperatures represent the range for steady-state operation. Under transient conditions, such as start-up and defrost, the compressor may operate outside this envelope for short periods. The figures below show the operating envelopes	 R134a and R22. The operating limits serve to define the envelope within which reliable operations of the compressor are guaranteed: Maximum discharge gas temperature: +135°C A suction superheat below 5 K is not recommended due to the risk of liquid flood back Minimum and maximum evaporating and condensing temperatures as per the operating envelopes.

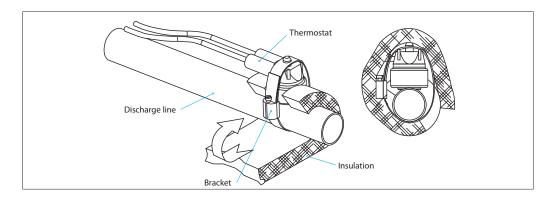

The figures below show the operating envelopes for MLZ compressors with refrigerants R404A/507,

OPERATING CONDITIONS

OPERATING CONDITIONS


Maximum discharge gas temperature

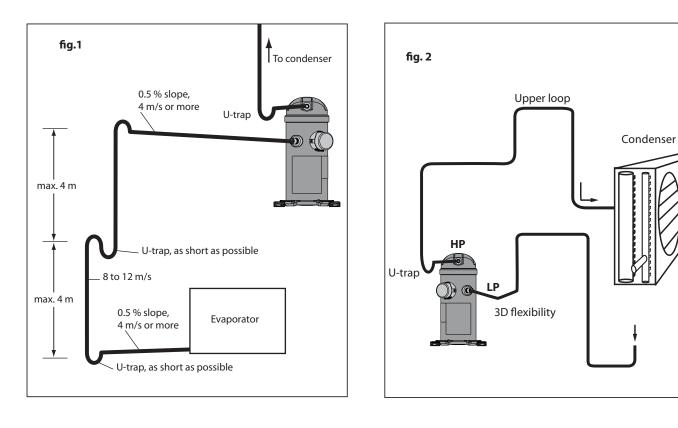
The discharge temperature depends mainly on the combination of evaporating temperature, condensing temperature and suction gas superheat. Discharge gas temperature should be controlled with an isolated thermocouple or thermostat attached to the discharge line 15 cm (6 inches) from the compressor shell. Maximum discharge gas temperature must not exceed 135°C (275°F) when the compressor is running within the approved operating envelope.


Discharge gas temperature protection (DGT)

DGT protection is required if the high and low pressure switch settings do not protect the compressor against operations beyond its specific application envelope. Please refer to the examples below, which illustrate where DGT protection is required (n°1) and where it is not (n°2). The compressor must not be allowed to cycle on the discharge gas thermostat. Continuous operations beyond the compressor's operating range will cause serious damage to the compressor!

A DGT accessory is available from Danfoss: refer to page 39.

Example 1 (R22, SH = 11 K) LP switch setting: LP1 = 2 bar (g) (-15°C) HP switch setting: HP1 = 23.8 bar (g) (61°C) O The LP and HP switches don't protect sufficiently from operation outside the envelope. A DGT protection is required to avoid operation in the hatched area. **Example 2** (R22, SH = 11 K) LP switch setting: LP2 = 2.5 bar (g) (-10°C) HP switch setting: HP2 = 17 bar (g) (49°C) O The LP and HP switches protect from operation outside the envelope. No DGT protection required.



OPERATING CONDITIONS

High and low pressure protection			R22	R404A	R134a
protection	Working pressure range high side	bar (g)	7.00 - 27.9	7.20 - 27.7	4.90 - 22.1
	Working pressure range low side	bar (g)	0.70 - 6.4	1.70 - 7.2	0.64 - 4.0
	Maximum high pressure safety switch setting	bar (g)	29.8	29.7	23.6
	Minimum low pressure safety switch setting ${\mathbb O}$	bar (g)	0.50	1.40	0.45
	Recommended pump-down switch settings	bar (g)	1.5 bar below nominal evaporating pressu		ating pressure
	Minimum low pressure pump-down switch setting	bar (g)	0.95	2.00	0.85
	${\rm I\!O}$ LP safety switch shall never have time delay.				
High pressure	MLZ/MLM 015-048 scroll compressors are equipped with an internal pressure relief valve (IPRV for protection against blocked condenser and fa failure conditions (IPRV setting 32 bar +/- 4 diffe ential pressure HP / LP). Still, a high pressure (H safety switch is recommended. MLZ/MLM058-068-076 scroll compressors are not equipped with an internal pressure relief valve therefore a high pressure switch is required to shut down the compressor should the discharge	r), abc n r- The P) ues con in a ot vice e; limi	ssure exceed t we. high-pressure depending or ditions. The HF lockout circuit to prevent cyc t. If a discharg st be connecte t, which must n	switch can be s the applicatio switch must e or consist of a n cling around th e valve is used of to the servi	set to lower val on and ambien either be placed nanual reset de e high-pressure , the HP switch
Low pressure	A low pressure (LP) safety switch is recommended. MLZ/MLM scroll compressors exhibit hig volumetric efficiency and may draw very lo vacuum levels, which could induce scroll insta- bility and electrical arcing at the internal cluster The minimum low-pressure safety switch settin is given in the above table. For systems without	h a m w wire a- swi er. erat g pur	np-down, the L aanual lockout ed into an ele tch tolerance n tions of the con np-down cycle ed in the table a	device or an au ctrical lockout hust not allow hpressor. LP sw s with automat	utomatic switch circuit. The Lf for vacuum op itch settings fo
On/off cycling (cycle rate limit)	Depending on the application, a number high than 12 starts per hour can reduce the service li- of the motor-compressor unit. A one-minute tim out is recommended. The system must be designed in a way that pro- vides a minimum compressor running time of minutes so as to provide for sufficient motor coo- ing after start-up along with proper oil retur	fe upo le Dar con 2 I-	e that the oil re on system desig nfoss recommer npressor cycling	n. nds a restart del	·

		Danfoss
APPLICATION GUIDELINES	System design recommendations	
General	Successful application of scroll compressors is dependent on careful selection of the compres- sor for the application. If the compressor is not	correct for the system, it will operate beyond the limits given in this manual. Poor performance, re- duced reliability, or both may result.
Essential piping design considerations	Proper piping practices should be employed to ensure adequate oil return, even under minimum load conditions with special consideration given to the size and slope of the tubing coming from the evaporator. Tubing returns from the evapora- tor should be designed so as not to trap oil and to prevent oil and refrigerant migration back to the compressor during off-cycles.	ing back to the discharge side of the compressor during off cycle. The upper loop also helps avoid condensed liquid refrigerant from draining back to the compressor when stopped (see fig. 2). The maximum elevation difference between the in- door and outdoor section cannot exceed 8 m. System manufacturers should specify precau- tions for any applications that exceed these limits to ensure compressor reliability.
	If the evaporator lies above the compressor the addition of a pump-down cycle is strongly recom- mended. If a pump-down cycle were to be omit- ted, the suction line must have a loop at the evap- orator outlet to prevent refrigerant from draining into the compressor during off-cycles.	Piping should be designed with adequate three- dimensional flexibility (figure 2). It should not be in contact with the surrounding structure, un- less a proper tubing mount has been installed. This protection proves necessary to avoid excess vibration, which can ultimately result in connec-
	If the evaporator were situated below the com- pressor, the suction riser must be trapped to en- sure the oil return to the compressor (see fig.1).	tion or tube failure due to fatigue or wear from abrasion. Aside from tubing and connection dam- age, excess vibration may be transmitted to the surrounding structure and generate an unaccept-
	When the condenser is mounted at a higher po- sition than the compressor, a suitably sized «U»- shaped trap close to the compressor is necessary	able sound level within that structure as well (for more information on sound and vibration, see the section on: «Sound and vibration management»

to prevent oil leaving the compressor from drain-

page 31).

SYSTEM DESIGN RECOMMENDATIONS

Refrigerant charge limit

MLZ/MLM scroll compressors can tolerate liquid refrigerant up to a certain extend without major problems. However, excessive liquid refrigerant in the compressor is always unfavourable for service life. Besides, the installation cooling capacity may be reduced because of the evaporation taking place in the compressor and/or the suction line instead of the evaporator. System design must be such that the amount of liquid refrigerant in the

compressor is limited. In this respect, follow the guidelines given in the section: "essential piping design recommendations" in priority.

Use the tables below to quickly evaluate the required compressor protection in relation with the system charge and the application. More detailed information can be found in the paragraphs hereafter. Please contact Danfoss for any deviation from these guidelines.

Model	Refrigerant charge limit (kg)	
MLZ015-026	3.6	
MLZ030-048	5.4	
MLZ058-076	7.2	

Depending on test results, crankcase heaters, Liquid Line Solenoid Valve, pump down or suction accumulator must be applied see below.

	BELOW charge limit	ABOVE charge limit	
Packaged units	✓ No test or additional safeties required	REQ Off cycle migration test REQ Liquid flood back test	
System with remote heat exchanger	REC Off cycle migration test	REQ Off cycle migration test REQ Liquid flood back test	
REC Recommended REQ	Required Vo test or additional safeti	ies required	

Note: for special conditions such as low ambient temperature, low load operation or brazed plate heat exchangers please refer to corresponding sections

Off-cycle migration	Off-cycle refrigerant migration is likely to occur when the compressor is located at the coldest part of the installation, when the system uses a bleed- type expansion device, or if liquid could migrate from the evaporator into the compressor sump by gravity. If too much liquid refrigerant accumulates in the sump it will saturate the oil and lead to a flooded start: when the compressor starts, the refrigerant evaporates abruptly under the sudden	decrease of the bottom shell pressure, causing the oil to foam. In extreme situations, this might result in too much oil leaving the compressor, which must be avoided as it causes irreversible damages due to possible lack of lubrication. MLZ/MLM scroll compressors can tolerate occa- sional flooded starts as long as the system has been evaluated.
	 A suitable test to evaluate the risk of off-cycle migration is the following: Stabilize the non running system at 5°C ambient temperature. Raise the ambient temperature to 20°C and keep it for 10 minutes. Start the compressor and monitor sump temperature, sight glass indication and sound level. 	The presence of liquid in the crankcase can be eas- ily detected by checking the sump level through the oil sight glass. Foam in the oil sump indicates a flooded start. A noisy start, oil loss from the sump and sump cool down are indications for migration. Depending on the amount of migration graduate measures shall be taken: • Crankcase heater • Liquid line solenoid valve • Pump down cycle
	Crankcase heater: when the compressor is idle, the oil temperature in the sump must be maintained at no lower than 10 K above the saturation temperature of the refrigerant on the low-pressure side. This requirement ensures that the lig-	must be conducted to ensure that the appropri- ate oil temperature is maintained under all am- bient conditions (temperature and wind). Below -5°C ambient temperature and a wind speed of

sure side. This requirement ensures that the liquid refrigerant is not accumulating in the sump. A crankcase heater is only effective if capable of sustaining this level of temperature difference. Tests above 5m/sec, it's recommended to thermally insulated the heaters in order to limit the surrounding energy losses.

System design recommendations

Due to the Danfoss scroll compressors inherent ability to handle liquid refrigerant, crankcase heaters are not required when the system charge does not exceed the recommended maximum charge.

Provide separate electrical supply for the heaters so that they remain energized even when the machine is out of service (eg. Seasonal shutdown).

Since the total system charge may be undefined, a crankcase heater is recommended on all systems with remote heat exchangers. In addition, any system containing a refrigerant charge in excess of the maximum recommended system charge for compressors requires a crankcase heater.

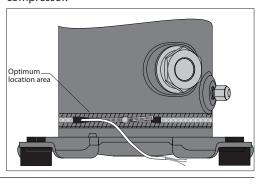
Belt-type crankcase heater accessories are available from Danfoss (see page 40).

The heater must be energized whenever the compressor is off.

Liquid line solenoid valve (LLSV): This feature is very convenient and can be used on all types of applications.

An LLSV is used to isolate the liquid charge in the high pressure side, thereby preventing against

Pump-down cycle: Once the system has reached its set point and is about to shut off, the LLSV on the liquid line closes. The compressor then pumps the majority of the refrigerant charge into the high pressure side before the system stops on the low pressure pump-down switch. This step reduces the amount of charge on the low side in order to prevent off-cycle migration.


A pump-down cycle represents one of the most effective ways to protect against the off-cycle migration of refrigerant; however it is only convenient to apply on application with thermostatic control.

Rack application with pressostatic control can use timer delay to empty the evaporators before the stop. Time should be carefully set to not interfere with the low safety pressure switch.

For low pressure pump-down switch settings, refer to page 24. For suggested wiring diagrams, please see page 17.

In certain conditions, the discharge valve in the MLZ/MLM058-076 may not completely seal and result in compressor restarts during pump down applications. An external, non-bleeding check valve may need to be installed.

It is recommended that the heater be turned on for a minimum of 12 hours prior to starting the compressor.

charge transfer or excessive migration to the compressor during off-cycles. The quantity of refrigerant remaining in the low-pressure side of the system can be further reduced by using a pump-down cycle in association with the LLSV.

Tests for pump down cycle approval:

- As the pump-down switch setting is inside the application envelope, tests should be carried out to check unexpected cut-out during transient conditions (ie. defrost – cold starting).
 When unwanted cut-outs occur, the low pressure pump-down switch can be delayed. In this case a low pressure safety switch without any delay timer is mandatory.
- While the thermostat is off, the number of pressure switch resets should be limited to avoid short cycling of the compressor. Use dedicated wiring and an additional relay which allows for one shot pump-down.

The pump-down allows to store all the refrigerant in the high pressure side circuit. On unitary or close-coupled systems, where the system refrigerant charge is expected to be both correct and definable the entire system charge may be stored in the condenser during pump-down if all components have been properly sized.

Other application needs a liquid receiver to store the refrigerant.

Receiver dimensioning requires special attention. The receiver shall be large enough to contain part of the system refrigerant charge but it shall not be dimensioned too large. A large receiver easily leads to refrigerant overcharging during maintenance operation.

		Danfoss
Application guidelines	System design recommendations	
Liquid flood back	During normal operation, refrigerant enters the compressor as a superheated vapour. Liquid flood back occurs when a part of the refrigerant enter- ing the compressor is still in liquid state.	A continous liquid flood back will cause oil dilution and, in extreme situations lead to lack of lubrifica- tion and high rate of oil leaving the compressor.
	Liquid flood back test - Repetitive liquid flood back testing must be carried out under TXV threshold operating conditions: a high pressure ratio and minimum evaporator load, along with	temperature be less than 35K above the saturated discharge temperature, this indicates liquid flood back.
	the measurement of suction superheat, oil sump temperature and discharge gas temperature.	Continuous liquid flood back can occur with a wrong dimensioning, a wrong setting or malfunc- tion of the expansion device or in case of evapora-
	During operations, liquid flood back may be de- tected by measuring either the oil sump tempera-	tor fan failure or blocked air filters.
	ture or the discharge gas temperature. If at any time during operations, the oil sump temperature drops to within 10K or less above the saturated suction temperature, or should the discharge gas	A suction accumulator providing additional pro- tection as explained hereunder can be used to solve light continuous liquid flood back.
	Suction accumulator: a suction accumulator offers protection against refrigerant flood back at start-up, during operations or defrosting by trapping the liquid refrigerant upstream from the compressor. The suction accumulator also protects against off-cycle migration by providing additional internal free volume to the low side of the system.	A suction accumulator must be carefully di- mensioned, taking into account the refrigerant charge as well as the gas velocity in the suction line. Depending on the operating conditions it may happen that the recommended connections of the accumulator are one size smaller than the suction line.

Danfoss

Low ambient application		
Low ambient start-up	Under cold ambient conditions (<0°C), upon start- up the pressure in the condenser may be so low that a sufficient pressure differential across the expansion device cannot be developed to prop- erly feed the evaporator. As a result, the compressor may go into a deep vacuum, which can lead to compressor failure due to internal arcing and instability in the scroll wraps. Under no circumstances should the com- pressor be allowed to operate under vacuum. The low-pressure control must be set in accordance with the table on page 24 in order to prevent this from happening.	Early feeding of the evaporator and management of the discharge pressure could help to attenuate these effects. Low pressure differentials can also cause the ex- pansion device to «hunt» erratically, which might cause surging conditions within the evaporator, with liquid spillover into the compressor. This ef- fect is most pronounced during low load condi- tions, which frequently occur during low ambient conditions.
Low ambient operations	It is recommended that the unit be tested and monitored at minimum load and low ambient conditions as well. The following considerations should be taken into account to ensure proper system operating characteristics. The expansion device should be sized to ensure proper control of the refrigerant flow into the evaporator. An oversized valve may result in er- ratic control. This consideration is especially important in manifolded units where low load conditions may require the frequent cycling of compressors. This can lead to liquid refrigerant entering the compressor if the expansion valve does not provide stable refrigerant super-heat control under varying loads. The superheat setting of the expansion device should be sufficient to ensure proper superheat levels during low loading periods. A minimum of 5 K stable superheat is required.	Head pressure control under low ambient conditions: Several possible solutions are avail- able to prevent the risk of compressor to vacuum and low pressure differential between the suction and discharge pressures.
Scroll and reciprocating	Unlike the reciprocating compressor, a scroll doesn't have dead volume. Neither does it have a suction valve causing pressure drop. As a result a scroll compressor has a high volumetric efficiency even at low suction pressure. In systems such as ice makers and milk cooling tanks this high capacity at low temperature shortens the cooling time.	When moving from a reciprocating compressor to a scroll compressor, the selection shall always be made based on cooling capacity at the appli- cation rating point. Never make a selection based on equivalent displacement.

Application guidelines	SPECIFIC APPLICATION RECOMMENDATIONS	
Low load operations	The compressor should be run for a minimum pe- riod to ensure that the oil has sufficient time to properly return to the compressor sump and that	the motor receives enough cooling under condi- tions of lowest refrigerant mass flow.
Brazed plate heat exchangers	A brazed plate heat exchanger needs very little in- ternal volume to satisfy the heat transfer require- ments. Consequently, the heat exchanger offers very little internal volume for the compressor to draw vapour from the suction side. The compres- sor can then quickly enter into a vacuum condi-	Due to the small volume of the brazed plate heat exchanger, no pump-down cycle is normally re- quired. The suction line running from the heat exchanger to the compressor must be trapped to avoid refrigerant migration to the compressor.
	tion. It is therefore important that the expansion device be sized correctly and that a sufficient pressure differential across the expansion device be available to ensure adequate refrigerant feed into the evaporator. This aspect is of special con- cern when operating the unit under low ambi- ent and load conditions. For further information on these conditions, please refer to the previous sections.	When using a brazed plate condenser heat ex- changer, a sufficient free volume for the discharge gas to accumulate is required in order to avoid excess pressure build-up. At least 1 meter of dis- charge line is necessary to generate this volume. To help reduce the discharge gas volume imme- diately after start-up, the supply of cooling water to the heat exchanger may be opened before the compressor starts, to remove superheat and con- dense the incoming discharge gas more quickly.
Water utilising systems	Apart from residual moisture in the system after	Corrosion: Materials in the system shall be compli-
	commissioning, water could also enter the re- frigeration circuit during operation. Water in the system shall always be avoided. Not only because it can shortly lead to electrical failure, sludge in sump and corrosion but in particular because it	ant with water and protected against corrosion. Freezing: When water freezes into ice its volume expands which can damage heat exchanger walls and cause leaks. During off periods water inside

Common causes for water leaks are corrosion and freezing.

can cause serious safety risks.

expands which can damage heat exchanger walls and cause leaks. During off periods water inside heat exchangers could start freezing when ambient temperature is lower than 0°C. During on periods ice banking could occur when the circuit is running continuously at too low load. Both situations should be avoided by connecting a pressure and thermostat switch in the safety line.

Jant

SOUND AND VIBRATION MANAGEMENT

Starting sound levelDuring start-up transients it is natural for the
compressor sound level to be slightly higher than
during normal running. MLZ/MLM scroll com-
pressors exhibit very little increased start-up tran-
sient sound. If a 3-phase model is miswired, the
compressor will run in reverse. Reverse compres-

sor rotation is characterized by an objectionable sound. To correct reverse rotation, disconnect power and switch any two of the three power leads at the unit contactor. Never switch leads at the compressor terminals.

Running sound level

MLZ/MLM are designed with features to reduce Sound levels are the sound level when a compressor is running. conditions.

Sound levels are at rated (medium temperature) conditions.

	50 Hz		60 Hz	
Model	Sound power (dBA) Without jacket	Sound power (dBA) With jacket	Sound power (dBA) Without jacket	Sound power (dBA) With jacket
MLZ/MLM 015				
MLZ/MLM 019	65	57	68	60
MLZ/MLM 021	65	57	68	60
MLZ/MLM026	67	59	70	62
MLZ/MLM 030	70	62	73	65
MLZ/MLM 038	71	63	74	66
MLZ/MLM 045	71	63	74	66
MLZ/MLM 048	72	64	75	67
MLZ/MLM 058	74	66	77	69
MLZ/MLM 066	74	66	77	69
MLZ/MLM 076	74	66	77	69

Stopping sound level	MLZ/MLM have a unique discharge valve design that minimizes stopping noise. This results in very low shutdown sound.	
Sound generation in a refrigeration system	Typical sound and vibration in refrigeration sys- tems encountered by design and service engi- neers may be broken down into the following three source categories. Sound radiation: This generally takes an air-	Mechanical vibrations: These generally extend along the parts of the unit and structure. Gas pulsation: This tends to travel through the cooling medium, i.e. the refrigerant.
	borne path.	The following sections will focus on the causes and methods of mitigation for each of the above sources.
Compressor sound radiation	For sound radiating from the compressor, the emission path is airborne and the sound waves are travelling directly from the machine in all directions.	Use of sound-insulation materials on the inside of unit panels is an effective means of substan- tially reducing the sound being transmitted to the outside. Ensure that no components capable of transmitting sound/vibration within the unit
	The MLZ/MLM scroll compressors are designed to be quiet and the frequency of the sound gener- ated is pushed into the higher ranges, which not only are easier to reduce but also do not gener- ate the penetrating power of lower-frequency sound.	come into direct contact with any non insulated parts on the walls of the unit. Because of the unique design of a full-suction gas & oil cooled motor, compressor body insulation across its entire operating range is possible.

SOUND AND VIBRATION MANAGEMENT

Danfoss

Mechanical vibrations	Vibration isolation constitutes the primary meth- od for controlling structural vibration. MLZ/MLM scroll compressors are designed to produce minimal vibration during operations. The use of rubber isolators on the compressor base plate or on the frame of a manifolded unit is very effec- tive in reducing vibration being transmitted from the compressor(s) to the unit. Rubber grommets are supplied with all MLZ/MLM compressors. Once the supplied rubber grommets have been properly mounted, vibration transmitted from the compressor base plate to the unit are held to	a strict minimum. In addition, it is extremely im- portant that the frame supporting the mounted compressor be of sufficient mass and stiffness to help dampen any residual vibration potentially transmitted to the frame. The tubing should be designed so as to both reduce the transmission of vibrations to other structures and withstand vibration without incurring any damage. Tubing should also be designed for three-dimensional flexibility. For more information on piping design, please see the section entitled "Essential piping design considerations" p. 25.
Gas pulsation	The MLZ/MLM scroll compressors have been de- signed and tested to ensure that gas pulsation has been minimized for the most commonly encoun- tered refrigeration pressure ratio. On installations where the pressure ratio lies beyond the typical range, testing should be conducted under all ex-	pected conditions and operating configurations to ensure that minimum gas pulsation is present. If an unacceptable level is identified, a discharge muffler with the appropriate resonant volume and mass should be installed. This information can be obtained from the component manufacturer.

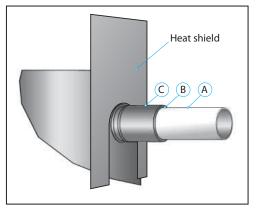
Application guidelines	INSTALLATION	
	Each MLZ/MLM compressor is shipped with print- ed Instructions for installation. These Instructions can also be downloaded from our web site	www.danfoss.com or directly from: http://instructions.cc.danfoss.com
System cleanliness	The refrigeration system, regardless of the type of compressor used, will only provide high efficiency and good reliability, along with a long operating life, if the system contains solely the refrigerant and oil it was designed for. Any other substances within the system will not improve performance and, in most cases, will be highly detrimental to system operations. The presence of non-condensable substances and system contaminants, such as metal shavings, sol- der and flux, have a negative impact on compres- sor service life. Many of these contaminants are	small enough to pass through a mesh screen and can cause considerable damage within a bearing assembly. The use of highly hygroscopic PVE oil in MLZ compressors requires that the oil be exposed to the atmosphere just as little as possible. During the manufacturing process, circuit con- tamination may be caused by: • Brazing and welding oxides, • Filings and particles from the removal of burrs in pipe-work, • Brazing flux, • Moisture and air.
Compressor handling and storage	Compressors are provided with a lifting lug. This lug should always be used to lift the compressor.	caution in the vertical position, with a maximum inclination of 15° from vertical. Store the compres-
	Once the compressor is installed, the lifting lug should never be used to lift the complete instal- lation. The compressor must be handled with	sor between -35°C and 50°C, not exposed to rair or corrosive atmosphere.
Compressor mounting	Maximum inclination from the vertical plane, while operating must not exceed 7 degrees. All compressors are delivered with 4 rubber grom-	mets and metal sleeves. Compressors must always be mounted with these grommets.
Compressor holding charge	Each compressor is shipped with a nominal dry nitrogen holding charge between 0.4 bar and 0.7 bar, and is sealed with elastomer plugs. The plugs should be removed with care to avoid oil loss when the holding charge is released. Remove the suction plug first and the discharge plug af-	terwards. The plugs shall be removed only just before connecting the compressor to the installa- tion in order to avoid moisture entering the com- pressor. When the plugs are removed, it is essen- tial to keep the compressor in an upright position to avoid oil spillage.
Tube brazing procedure	Do not bend the compressor discharge or suc- tion lines or force system piping into the com- pressor connections, because this will increase	stresses that are a potential cause of failure Recommended brazing procedures and material are described on following page.
Brazing material	For copper suction and discharge fittings, use copper-phosphorus brazing material. Sil-Fos [®] and other silver brazing materials are also accept-	able. If flux is required for the brazing operation use coated rod or flux core wire. To avoid system contamination, do not brush flux on.

INSTALLATION

Compressor connection

When brazing the compressor fittings, do not overheat the compressor shell, which could severely damage certain internal components due to excessive heating. Use of a heat shield and/ or a heat-absorbent compound is highly recommended. For brazing the suction and discharge connections, the following procedure is advised: • Make sure that no electrical wiring is connected to the compressor.

Protect the terminal box and compressor painted surfaces from torch heat damage (see diagram).
Use only clean refrigeration-grade copper tubing and clean all connections.


• Purge nitrogen through the compressor in order to prevent against oxidation and flammable conditions. The compressor should not be exposed to the open air for extended periods.

Use of a double-tipped torch is recommended.
Apply heat evenly to area A until the brazing temperature is reached. Move the torch to area B and apply heat evenly until the brazing temperature has been reached there as well, and then begin adding the brazing material. Move the torch evenly around the joint, in applying only enough brazing material to flow the full circumference of the joint.

• Move the torch to area (C) only long enough to draw the brazing material into the joint, but not into the compressor.

• Remove all remaining flux once the joint has been soldered with a wire brush or a wet cloth. Remaining flux would cause corrosion of the tubing.

Ensure that no flux is allowed to enter into the tubing or compressor. Flux is acidic and can cause substantial damage to the internal parts of the system and compressor.

The PVE oil used in MLZ compressors is highly hygroscopic and will rapidly absorb moisture from the air. The compressor must therefore not be left open to the atmosphere for a long period of time. The compressor fitting plugs shall be removed just before brazing the compressor.

Before eventual unbrazing the compressor or any system component, the refrigerant charge must be removed from both the high and low pressure sides. Failure to do so may result in serious personal injury. Pressure gauges must be used to ensure all pressures are at atmospheric level.

For more detailed information on the appropriate materials required for brazing or soldering, please contact the product manufacturer or distributor. For specific applications not covered herein, please contact Danfoss for further information.

Vacuum evacuation and
moisture removalMoisture obstructs the proper functioning of the
compressor and the refrigeration system.

Air and moisture reduce service life and increase condensing pressure, and cause excessively high discharge temperatures, which can destroy the lubricating properties of the oil. Air and moisture also increase the risk of acid formation, giving rise to copper platting. All these phenomena can cause mechanical and electrical compressor failure.

For these reasons it's important to perform a vacuum dehydration on the system to remove all residual moisture from the pipe-work after assembly;

MLZ and MLM compressors are delivered with < 100 ppm moisture level. The required moisture level in the circuit after vacuum dehydration must be < 100 ppm for systems with an MLZ and < 300 ppm for systems with an MLM compressor.

- Never use the compressor to evacuate the system.
- Connect a vacuum pump to both the LP & HP sides.
- \bullet Evacuate the system to a pressure of 500 μm Hg (0.67 mbar) absolute.
- Do not use a megohm meter nor apply power to the compressor while it's under vacuum as this may cause internal damage.

		Danfois
Application guidelines	Installation	
Liquid line filter driers	A properly sized & type of drier is required. Important selection criteria include the driers wa- ter content capacity, the system refrigeration ca- pacity, and the system refrigerant charge. The dri- er must be able to reach and maintain a moisture level of 50 ppm end point dryness (EPD). Danfoss recommends DCL (solid core) driers for the MLM compressor (R22 with Alkylbenzene) and DML (100% molecular sieve) driers for MLZ compres- sors (R404A, R507, R134a, R22) with PVE oil.	For servicing of existing installations where acid formation may be present, the Danfoss DCL solid core filter drier containing activated alumina is recommended. After burn out, remove & replace the liquid line filter drier and install a Danfoss type DAS burn- out drier of the appropriate capacity. Refer to the DAS drier instructions and technical information for correct use of the burnout drier on the liquid line.
Refrigerant charging	It is recommended that system charging be done using the weighed charge method, adding refrig- erant to the high side of the system. Charging the high and low sides of a system with gas simulta- neously at a controlled rate is also an acceptable method. Do not exceed the recommended unit charge, and never charge liquid to the low side.	Vacuum or charge from one side can seal the scrolls and result in a non-starting compressor. When servicing, always ensure that LP/HP pressures are balanced before starting the compressor. Be sure to follow all government regulations re- garding refrigerant reclamation and storage.
Insulation resistance and dielectric strength	Insulation resistance must be higher than 1 meg- ohm when measured with a 500 volt direct cur- rent megohm tester. Each compressor motor is tested at the factory with a high potential voltage (hi-pot) that exceeds the UL requirement both in potential and in dura- tion. Leakage current is less than 0.5 mA. MLZ/MLM scroll compressors are configured with the pump assembly at the top of the shell, and the motor below. As a result, the motor can be partial- ly immersed in refrigerant and oil. The presence of refrigerant around the motor windings will result in lower resistance values to ground and higher	leakage current readings. Such readings do not indicate a faulty compressor, and should not be cause for concern. In testing insulation resistance, Danfoss recom- mends that the system be first operated briefly to distribute refrigerant throughout the system. Following this brief operation, retest the compres- sor for insulation resistance or current leakage. Never reset a breaker or replace a fuse without first checking for a ground fault (a short circuit to ground). Be alert for sounds of arcing inside the compressor.

antos

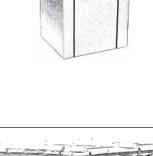
ORDERING INFORMATION AND PACKAGING

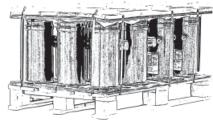
Packaging

Single pack

Compressors are packed individually in a cardboard box. They can be ordered in any quantity. Minimum ordering quantity = 1. As far as possible, Danfoss will ship the boxes on full pallets of 6 or 9 compressors according below table.

- Each box also contains following accessories:
- 4 grommets
- 4 assemblies of self tapping US thread bolts, washers and sleeves
- 4 additional sleeves
- 1 screw for earth connection
- Depending on model and shipping type a run capacitor may be included (see table).


Industrial pack


Packaging details

Compressors are not packed individually but are shipped all together on one pallet. They can be ordered in quantities of full pallets only, multiples of 12 or 16 compressors, according below table.

Each industrial pack pallet contains following accessories:

- 4 grommets per compressor
- 4 sleeves per compressor

		US pallets Optimized for overseas container loading		Danfoss pallets Optimized for overseas container loading European storage racks	
	Code number	120U		121U	
	Pack type	Industrial pack	Single pack	Industrial pack	Single pack
	Compressors per pallet	16 9*		12	6 *
	Static stacking of pallets **	4 4		4	4
S	Run capacitor (for single phase models)	Not included	Not included	Not included	Included
accessories	Screw for earth connection	Not included	Included	Included	Included
d acce	4 grommets per compressor	Included	Included	Included	Included
Shipped	4 assemblies of self tapping US thread bolt + washer + sleeve per compressor	Not included	Included	Not included	Included
Sł	4 extra sleeves per compressor	Included	Included	Included	Included

* Quantity for full pallets. Single packs can be ordered per 1.

** Stacking only allowed for full pallets with identical products per pallet

ORDERING INFORMATION AND PACKAGING

		Commence	Model	Compositions	Feetunee	Single	e pack	Industrial pack	
		Compressors	variation	Connections	Features	code 4	code 5	code 4	code 5
		MLZ015	Т	Р	9	120U8002	120U8024	120U8001	120U8023
		MLZ019	Т	Р	9	120U8004	120U8026	120U8003	120U8025
		MLZ021	Т	Р	9	120U8006	120U8028	120U8005	120U8027
		MLZ026	Т	Р	9	120U8008	120U8030	120U8007	120U8029
	et	MLZ030	Т	С	9	120U8010	120U8032	120U8009	120U8031
	US pallet	MLZ038	Т	С	9	120U8012	120U8034	120U8011	120U8033
	US	MLZ045	Т	С	9	120U8014		120U8013	
		MLZ048	Т	С	9	120U8016		120U8015	
		MLZ058	Т	С	9	120U8018		120U8017	
lels		MLZ066	Т	С	9	120U8020		120U8019	
MLZ models		MLZ076	Т	С	9	120U8022		120U8021	
Z		MLZ015	Т	Р	9	121U8002	121U8024	121U8001	121U8023
ML	Danfoss palett	MLZ019	Т	Р	9	121U8004	121U8026	121U8003	121U8025
_		MLZ021	Т	Р	9	121U8006	121U8028	121U8005	121U8027
		MLZ026	Т	Р	9	121U8008	121U8030	121U8007	121U8029
		MLZ030	Т	С	9	121U8010	121U8032	121U8009	121U8031
		MLZ038	Т	С	9	121U8012	121U8034	121U8011	121U8033
		MLZ045	Т	С	9	121U8014		121U8013	
		MLZ048	Т	С	9	121U8016		121U8015	
		MLZ058	Т	С	9	121U8018		121U8017	
		MLZ066	Т	С	9	121U8020		121U8019	
		MLZ076	Т	С	9	121U8022		121U8021	
		MLM015	Т	Р	9	120U8072	120U8094	120U8071	120U8093
		MLM019	Т	Р	9	120U8074	120U8096	120U8073	120U8095
		MLM021	Т	Р	9	120U8076	120U8098	120U8075	120U8097
s		MLM026	Т	Р	9	120U8078	120U8100	120U8077	120U8099
MLM models	pallet	MLM030	Т	С	9	120U8080	120U8102	120U8079	120U8101
Ĕ	pal	MLM038	Т	С	9	120U8082	120U8104	120U8081	120U8103
Z	US	MLM045	Т	С	9	120U8084		120U8083	
Σ		MLM048	Т	C	9	120U8086		120U8085	
		MLM058	Т	С	9	120U8088		120U8087	
		MLM066	Т	С	9	120U8090		120U8089	
		MLM076	Т	С	9	120U8092		120U8091	

Danfoss

-

SPARE PARTS & ACCESSORIES

Run capacitors for PSC wiring

	1				
Туре	Code n°	Description	Application	Packaging	Pack size
70 µF	120Z0051	PSC wiring Run Capacitor 70 $\mu\text{F},$ motor voltage code 5 - 220-240V / 1 / 50Hz	MLZ015-019-021-026	Multipack	10
50 µF	8173233	PSC wiring Run Capacitor 50 $\mu\text{F},$ motor voltage code 5 - 220-240V / 1 / 50Hz	MLZ030	Multipack	10
55 μF	8173234	PSC wiring Run Capacitor 55 $\mu\text{F},$ motor voltage code 5 - 220-240V / 1 / 50Hz	MLZ038-045-048	Multipack	10

Start capacitors and starting relay for CSR wiring

Туре	Code n°	Description	Application	Packaging	Pack size
145-175 μF	120Z0399	CSR wiring Start Capacitor 145-175 $\mu\text{F},$ motor voltage code 5 - 220-240V / 1 / 50Hz	MLZ015-019-021-026	Multipack	10
161-193 μF	120Z0040	CSR wiring Start Capacitor 161-193 $\mu\text{F},$ motor voltage code 5 - 220-240V / 1 / 50Hz	MLZ030	Multipack	10
88-108 μF	8173001	CSR wiring Start Capacitor 88-108 $\mu\text{F},$ motor voltage code 5 - 220-240V / 1 / 50Hz	MLZ038-045-048	Multipack	10
RVA9CKL	120Z0393	CSR wiring Starting Relay, motor voltage code 5 - 220-240V / 1 / 50Hz	MLZ015-019-021-026	Multipack	10
RVA3EKL	120Z0394	CSR wiring Starting Relay, motor voltage code 5 - 220-240V / 1 / 50Hz	MLZ030	Multipack	10
RVA4GKL	120Z0395	CSR wiring Starting Relay, motor voltage code 5 - 220-240V / 1 / 50Hz $$	MLZ038-045-048	Multipack	10

Rotolock adaptor set

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0126	Rotolock adaptor set (1-1/4" ~ 3/4") , (1" ~ 1/2")	MLZ 015-019-021-026	Multipack	6
	120Z0127	Rotolock adaptor set (1-1/4" ~ 7/8") , (1" ~ 1/2")	MLZ 030-038-045	Multipack	6
	120Z0128	Rotolock adaptor set (1-1/4" ~ 7/8") , (1-1/4" ~ 3/4")	MLZ 048	Multipack	6
	120Z0129	Rotolock adaptor set (1-3/4" ~ 1-1/8"), (1-1/4" ~ 7/8")	MLZ 058-066-076	Multipack	6

Rotolock adaptor

$\left(\right)$	16
	-W

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0366	Rotolock adaptor (1-1/4" ~ 3/4")	MLZ 015-019-021-026 suction	Multipack	10
	120Z0367	Rotolock adaptor (1-1/4" ~ 7/8")	MLZ 030-038-045-048 suction	Multipack	10
	120Z0364	Rotolock adaptor (1-3/4" ~ 1-1/8")	MLZ 058-066-076 suction	Multipack	10
	120Z0365	Rotolock adaptor (1" ~ 1/2")	MLZ 015-019-021-026-030-038- 045 discharge	Multipack	10
	120Z0366	Rotolock adaptor (1-1/4" ~ 3/4")	MLZ 048 discharge	Multipack	10
	120Z0367	Rotolock adaptor (1-1/4" ~ 7/8")	MLZ 058-066-076 discharge	Multipack	10

SPARE PARTS & ACCESSORIES

Crankcase heater

Туре	Code No	Description	Application	Packaging	Pack Size			
	120Z5037	Belt type crankcase heater, 70 W, 240 V, CE mark, UL		Multipack	6			
	120Z5040	Belt type crankcase heater, 70 W, 240 V, CE mark, UL	MLZ/MLM 015-019-021-026	Multipack	6			
	120Z5038	Belt type crankcase heater, 70 W, 460 V, CE mark, UL		Multipack	6			
	120Z5039	Belt type crankcase heater, 70 W, 575 V, CE mark UL		Multipack	6			
	120Z0059	Belt type crankcase heater, 65 W, 230 V, CE mark, UL		Multipack	6			
	120Z5011	Belt type crankcase heater, 70 W, 230 V, UL		Multipack	6			
	120Z0060	Belt type crankcase heater, 65 W, 400 V, CE mark, UL	MLZ/MLM 030-038-045-048-058-066-076	Multipack	6			
	120Z5012	Belt type crankcase heater, 70 W, 460 V, UL		Multipack	6			
	120Z5013	Belt type crankcase heater, 70 W, 575 V, UL		Multipack	6			

Discharge temperature protection

Туре	Code No	Description	Application	Packaging	Pack Size
	7750009	Discharge thermostat kit	All models	Multipack	10
	7973008	Discharge thermostat kit	All models	Industry pack	50

Lubricant

Hanner Hanner Henry Honore Honore Honore

-	Туре	Code No	Description	Application	Packaging	Pack Size
3	320HV	120Z5034	PVE lubricant, 1 litre can	MLZ	Single pack	1

Mounting hardware

Туре	Code No	Description	Application	Packaging	Pack Size
	120Z5017	Mounting grommet	All models	Single pack	1
	120Z5014	Mounting sleeve	All models	Single pack	1
	120Z5031	Mounting kit, including 1 bolt, 1 sleeve, 1 washer	All models	Single pack	1
	120Z5005	Mounting kit for 1 scroll compressor including 4 grommets, 4 sleeves, 4 bolts, 4 washers	All models	Single pack	1

Danfoss

The Danfoss product range for the refrigeration and air conditioning industry

Danfoss Refrigeration & Air Conditioning is a worldwide manufacturer with a leading position in industrial, commercial and supermarket refrigeration as well as air conditioning and climate solutions. We focus on our core business of making quality products, components and systems that enhance performance and reduce total life cycle costs – the key to major savings.

Controls for Commercial Refrigeration

Industrial Automation

Sub-Assemblies

Controls for Industrial Refrigeration

Household Compressors

Thermostats

Electronic Controls & Sensors

Commercial Compressors

Brazed plate heat exchanger

We are offering a single source for one of the widest ranges of innovative refrigeration and air conditioning components and systems in the world. And, we back technical solutions with business solution to help your company reduce costs, streamline processes and achieve your business goals.

Danfoss A/S • www.danfoss.com

Danfoss Commercial Compressors http://cc.danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.